Kota YAMASHITA Shotaro KAMIYA Koji YAMAMOTO Yusuke KODA Takayuki NISHIO Masahiro MORIKURA
In this study, a contextual multi-armed bandit (CMAB)-based decentralized channel exploration framework disentangling a channel utility function (i.e., reward) with respect to contending neighboring access points (APs) is proposed. The proposed framework enables APs to evaluate observed rewards compositionally for contending APs, allowing both robustness against reward fluctuation due to neighboring APs' varying channels and assessment of even unexplored channels. To realize this framework, we propose contention-driven feature extraction (CDFE), which extracts the adjacency relation among APs under contention and forms the basis for expressing reward functions in disentangled form, that is, a linear combination of parameters associated with neighboring APs under contention). This allows the CMAB to be leveraged with a joint linear upper confidence bound (JLinUCB) exploration and to delve into the effectiveness of the proposed framework. Moreover, we address the problem of non-convergence — the channel exploration cycle — by proposing a penalized JLinUCB (P-JLinUCB) based on the key idea of introducing a discount parameter to the reward for exploiting a different channel before and after the learning round. Numerical evaluations confirm that the proposed method allows APs to assess the channel quality robustly against reward fluctuations by CDFE and achieves better convergence properties by P-JLinUCB.
Akihito TAYA Takayuki NISHIO Masahiro MORIKURA Koji YAMAMOTO
Sharing perceptual data (e.g., camera and LiDAR data) with other vehicles enhances the traffic safety of autonomous vehicles because it helps vehicles locate other vehicles and pedestrians in their blind spots. Such safety applications require high throughput and short delay, which cannot be achieved by conventional microwave vehicular communication systems. Therefore, millimeter-wave (mmWave) communications are considered to be a key technology for sharing perceptual data because of their wide bandwidth. One of the challenges of data sharing in mmWave communications is broadcasting because narrow-beam directional antennas are used to obtain high gain. Because many vehicles should share their perceptual data to others within a short time frame in order to enlarge the areas that can be perceived based on shared perceptual data, an efficient scheduling for concurrent transmission that improves spatial reuse is required for perceptual data sharing. This paper proposes a data sharing algorithm that employs a graph-based concurrent transmission scheduling. The proposed algorithm realizes concurrent transmission to improve spatial reuse by designing a rule that is utilized to determine if the two pairs of transmitters and receivers interfere with each other by considering the radio propagation characteristics of narrow-beam antennas. A prioritization method that considers the geographical information in perceptual data is also designed to enlarge perceivable areas in situations where data sharing time is limited and not all data can be shared. Simulation results demonstrate that the proposed algorithm doubles the area of the cooperatively perceivable region compared with a conventional algorithm that does not consider mmWave communications because the proposed algorithm achieves high-throughput transmission by improving spatial reuse. The prioritization also enlarges the perceivable region by a maximum of 20%.